

Product Features

- 1805~1880MHz
- 89.1W Saturated Power @ 48V
- 16% Drain Efficiency @ 35dBm
- Internally 50ohm Matched
- 2-Stage Amplifier Module
- GaN on SiC Technology

Applications

- Massive MIMO
- 4G System
- Multi-Band, Multi-Mode
- Multi-Carrier
- RRH Drive Amplifier

Package Type: PP-3G

Description

The SDM18007-30H is a fully integrated micro-strip GaN Hybrid power amplifier module designed for applications in 4G LTE MIMO systems, small cells and low power remote radio heads. SDM Series is an integrated 2-stage power amplifier module, 50ohm input and output impedance matched device can deliver up to 89.1W of saturation power and operating drain voltage 48V. This device is size 8x14x2.6mm and is packaged in a ceramic surface mount package.

Typical Performance

 $(V_{DS} = +48V, T_{C} = 25^{\circ}C, 50\Omega)$

Eraguanay [MH	·~1	Peak Power	Average Power*1					
Frequency [MHz]		Power [W]	Power [W]	Gain [dB]	Drain Efficiency [%]	ACLR [dBc]		
1815		94.8	3.2	42.7	16.0	-40.2		
1842.5		97.3	3.2	42.5	15.8	-40.4		
1870		96.6	3.2	42.5	15.8	-40.5		

Note

Absolute Maximum Ratings

Rating	Symbol	Value	Unit	Condition
Drain to Source Voltage	V _{DSS}	100	V	Tc=25 °C
Gate to Source Voltage	V_{GS}	-10, +2	V	Tc=25 ℃
Operating Voltage	V_{DD}	52	V_{DC}	
Storage Temperature	T_{STG}	-40, +125	°C	
Case Operating Temperature	$T_{\rm C}$	-30, +125	°C	
Operating Junction Temperature*1	T_{J}	225	°C	
Soldering Temperature*2	T_{S}	250	°C	

Note

^{*1} Measured in the SDM18007-30H test board amplifier circuit, under LTE 20MHz 1carrier, PAR 7.5dB @0.01% probability on CCDF.

^{*1} Continuous use at maximum temperature will affect MTTF.

 $^{*2\} Refer to the\ Application\ Note (AN-002)\ on\ soldering\ -\ "Solder\ Condition\ for\ RFHIC's\ GaN\ Device"$

Electrical Characteristics*1 (T_C=25°C unless otherwise noted)

Characteristics	Conditions	Symbol	Min	Тур	Max	Unit		
DC Characteristics (Main)								
Maximum Forward Gate Current	Tc= 25 ℃	I_{GMAX}	-	-	12	mA		
Maximum Drain Current*2	Tc= 25℃	I _{DMAX}	-	-	4.50	A		
Power Dissipation	Tc= 85℃	P _{DMAX}	-	-	51.9	W		
Gate Threshold Voltage	$V_{DS} = 10V$ $I_{D} = 10.8 \text{mA}$	V _{GS(TH)}	-3.8	-3.0	-2.3	V _{DC}		
Gate Quiescent Voltage	$V_{DS} = 48V$ $I_{D} = 120mA$	$V_{\mathrm{GS(Q)}}$	-3.7	-2.9	-2.2	V _{DC}		
Drain-Source Breakdown Voltage	$V_{GS} = -8V$ $I_{D} = 10.8 \text{mA}$	V _{BR}	150	-	-	V		
Saturated Drain Current*3	$V_{DS} = 6V$ $V_{GS} = 2V$	I_{DS}	9.0	10.8	-	A		
Gate Leakage Current	$V_{GS} = -8V$ $V_{DS} = 150V$	I _{GLKG150}	-3.3	-	-	mA		
Drain Leakage Current	$V_{GS} = -8V$ $V_{DS} = 150V$	I _{DLKG150}	-	-	4.3	mA		
	DC C	haracteristics (Drive)					
Maximum Forward Gate Current	Tc= 25℃	I_{GMAX}	-	-	2	mA		
Maximum Drain Current*2	Tc= 25℃	I _{DMAX}	-	-	0.8	A		
Power Dissipation	Tc= 85 ℃	P _{DMAX}	-	-	21.2	W		
Gate Threshold Voltage	$V_{DS} = 10V$ $I_{D} = 2.16\text{mA}$	$V_{GS(TH)}$	-3.8	-3.0	-2.3	V_{DC}		
Gate Quiescent Voltage	$V_{DS} = 48V$ $I_{D} = 30mA$	$V_{\mathrm{GS}(\mathrm{Q})}$	-3.7	-2.9	-2.2	V_{DC}		
Drain-Source Breakdown Voltage	$V_{GS} = -8V$ $I_{D} = 2.16\text{mA}$	V_{BR}	150	-	-	V		
Saturated Drain Current*3	$V_{DS} = 6V$ $V_{GS} = 2V$	I_{DS}	1.7	2.1	-	A		
Gate Leakage Current	$V_{GS} = -8V$ $V_{DS} = 150V$	I _{GLKG150}	-0.7	-	-	mA		
Drain Leakage Current	$V_{GS} = -8V$ $V_{DS} = 150V$	I _{DLKG150}	-	-	0.9	mA		

Note

^{*1} Measured on wafer prior to packaging.

^{*2} Current Limit for long term, reliable operation

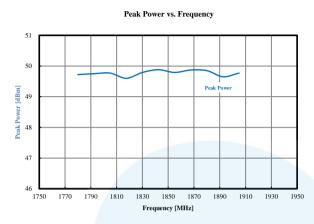
^{*3} Scaled from PCM data.

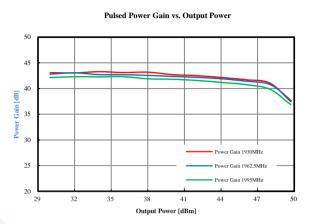
Characteristics Conditions		Symbol	Min	Тур	Max	Unit	
RF Characteristics (F=1842.5MHz unless otherwise noted)							
Saturated Output Power*1, 4	$V_{DS} = 48V$	P_{SAT}	71	89.1	126	W	
Modulated Gain*2	$\begin{aligned} \mathbf{V}_{DS} &= \mathbf{48V} \\ \mathbf{P}_{OUT} &= \mathbf{35dBm} \end{aligned}$	G_{P}	38	42	45	dB	
Linearity*2	$\begin{aligned} \mathbf{V}_{DS} &= \mathbf{48V} \\ \mathbf{P}_{OUT} &= \mathbf{35dBm} \end{aligned}$	ACLR	-50	-40	-25	dBc	
Modulated Drain Efficiency*2	$\begin{aligned} V_{DS} &= 48V \\ P_{OUT} &= 35 dBm \end{aligned}$	η	12	16	20	%	
Output Mismatch Stress*1,3	$\begin{aligned} \mathbf{V}_{DS} &= \mathbf{48V} \\ \mathbf{P}_{OUT} &= \mathbf{P}_{SAT} \ \mathbf{Pulsed} \end{aligned}$	VSWR	-	-	10:1	Ψ	

Note

^{*1} Pulse width $10\mu sec$, Pulse period $100\mu sec$.

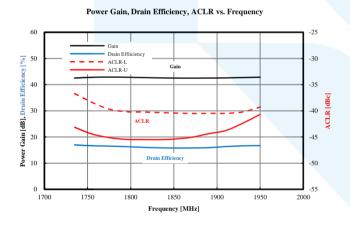
^{*2} Measured in the SDM18007-30H test board amplifier circuit, under LTE 20MHz 1carrier, PAR 7.5dB @0.01% probability on CCDF. Drive Idq=30mA, Main Idq=120mA

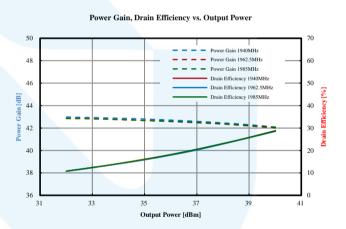

^{*3} Measured in the SDM18007-30H test board amplifier circuit. No damage at all phase angles.

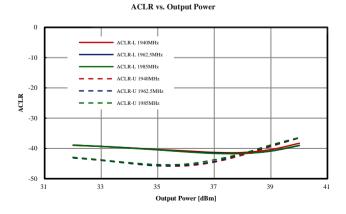

^{*4} Psat is defined as ΔPout/ΔPin<0.1, where ΔPin is increased input power, ΔPout is increased output power.

Typical Pulsed Signal Performance

(Tc=25°C, Measured in the SDM18007-30H test board amplifier circuit)

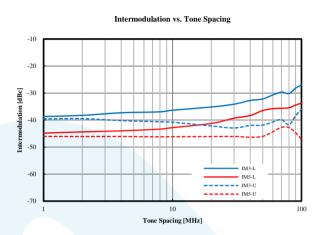





 V_{DS} = 48V, Drive Idq=30mA, Main Idq=120mA Pulse width 100µsec, Pulse period 1ms

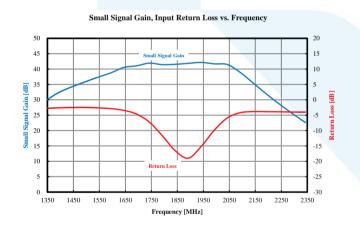
Typical Modulated Signal Performance

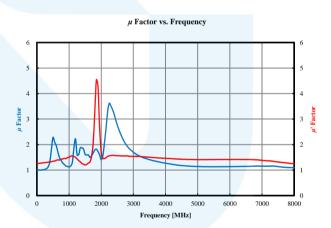
(Tc=25°C, Measured in the SDM18007-30H test board amplifier circuit)



 $V_{DS} = 48V, \quad Drive\ Idq = 30mA, \quad Main\ Idq = 120mA$ LTE 20MHz 1carrier, PAR 7.5dB @0.01% probability on CCDF.

Typical 2-tone Intermodulation Imbalance Performance

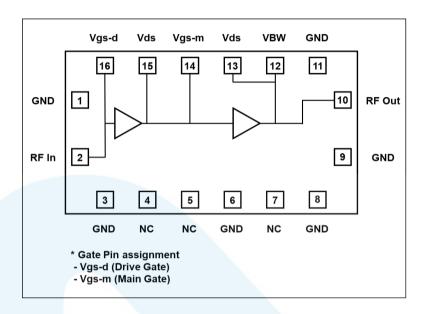

(Tc=25°C, Measured in the SDM18007-30H test board amplifier circuit)

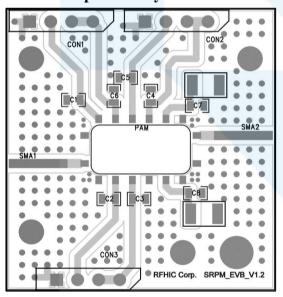


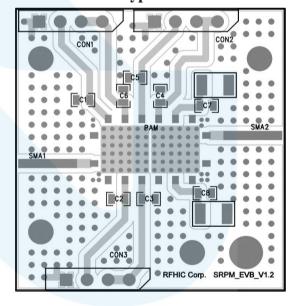
2-tone Power = 35dBm, $V_{DS} = 48V$, Drive Idq=30mA, Main Idq=120mA

Typical Small Signal Performance

(Tc=25°C, Measured in the SDM18007-30H test board amplifier circuit)

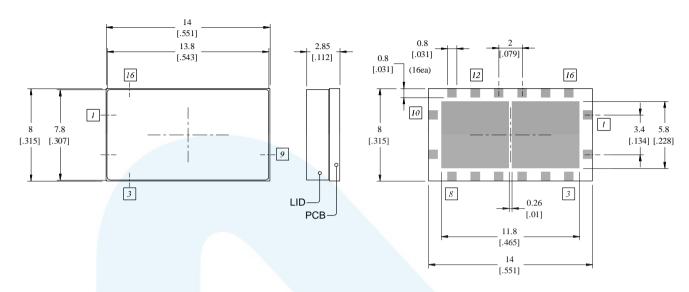



Input Power= -20dBm, $V_{DS} = 48V$, Drive Idq=30mA, Main Idq=120mA



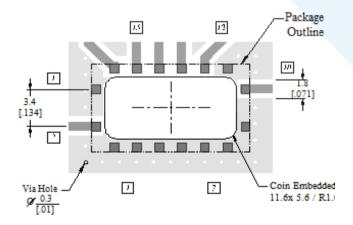
Block Diagram

Test Board Component Layout with Coin Embedded and Thermal Via Type



Part	Description	Part Number	Manufacturer
C4, C6, C7	1.0uF / 100V	GRM21BC72A105KE01	MURATA
C1, C5	4.7uF / 16V	TAJA475M016RNJ	AVX
PCB	2Layer, 20mil, 1oz	RO4350B	ROGERS
CON1~2	2.54mm Male Connector	5267-04A	MOLEX
SMA1~2	Female Connector	-	-
PAM	GaN Hybrid PAM	SDM18007-30H	RFHIC

Package Dimensions (Type:PP-3G)


* Unit: mm[inch] | Tolerance: ±0.15[.006]

Pin Description								
2	4	5	10	13	14	15	16	12
RF In	-	-	RF Out	V_{DS}	V_{GS-m}	V_{DS}	V_{GS-d}	VBW
-	-	-	-	Main	Main	Drive	Drive	

^{*} Other Pins are GND.

Recommended Footprint & Coin Embedded

Revision History

Part Number	Release Date	Version	Description	Data Sheet Status
SDM18007-30H	May. 2024	0.1	Initial version	Preliminary

Certification

This product is manufactured by a company that is certified for the AS9100D quality management system.

RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product at any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclaims any and all liability, including without limitation consequential or incidental damages. RFHIC products are not intended for use in life support equipment or application where malfunction of the product can be expected to result in personal injury or death. Buyer uses or sells such products for any such unintended or unauthorized application, buyer shall indemnify, protect, and hold RFHIC Corporation and its directors, officers, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use. All sales inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US sales team through our website at https://rfhic.com/contact/. For all other inquiries, please contact our international sales team through our website portal at https://rfhic.com/contact/.